- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Talebpour, Alireza (2)
-
Zhang, Yanlin (2)
-
Hamdar, Samer H (1)
-
Mahmassani, Hani S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The data-driven characterization of discretionary lane-changing behaviors has traditionally been hindered by the scarcity of high-resolution data that can precisely record lateral movements. In this study, we conducted an exploratory investigation leveraging the Third Generation Simulation (TGSIM) dataset to advance our understanding of discretionary lane-changing behaviors. In this paper, we developed a discretionary lane-changing extraction pipeline and scrutinized crucial factors such as gaps and relative speeds in leading and following directions. A dynamic time warping (DTW) analysis was performed to quantify the difference between any pair of lane-changing behaviors, and an affinity propagation (AP) clustering, evaluated on normalized DTW distance, was conducted. Our results yielded five clusters based on lead and lag gaps, enabling us to categorize lane-changing behaviors into aggressive, neutral, and cautious for both leading and following directions. Clustering based on relative speeds revealed two distinct groups of lane-changing behaviors, one representing overtaking and the other indicative of transitioning into a lane with stable and homogenous speed. The proposed DTW analysis, in conjunction with AP clustering, demonstrated promising potential in categorizing and characterizing lane-changing behaviors. Additionally, this approach can be readily adapted to analyze any driving behavior.more » « lessFree, publicly-accessible full text available April 12, 2026
-
Zhang, Yanlin; Talebpour, Alireza (, Transportation Research Record: Journal of the Transportation Research Board)Automated vehicles are expected to influence human drivers’ behavior. Accordingly, capturing such changes is critical for planning and operation purposes. With regard to car-following behavior, a key question is whether existing car-following models can replicate these changes in human behavior. Using a data set that was collected from the car-following behavior of human drivers when following automated vehicles, this paper offers a robust methodology based on the concept of dynamic time warping to investigate the critical parameters that can be used to capture changes in human behavior. The results indicate that spacing can best substantiate such changes. Moreover, calibration and validation of the intelligent driver model (IDM) suggest its inability to capture changes in human behavior in response to automated vehicles. Thus, an extension of the IDM that explicitly models stochasticity in the behavior of individual drivers is applied, and the results show such a model can identify a reduction in uncertainty when following an automated vehicle. This finding also has implications for a stochastic extension to other models when analyzing and simulating a mixed-autonomy traffic flow environment.more » « less
An official website of the United States government
